
Introduction to SQL

SQL is a standard language for accessing and manipulating databases.

What is SQL?
 SQL stands for Structured Query Language
 SQL lets you access and manipulate databases
 SQL is an ANSI (American National Standards Institute) standard

What Can SQL do?
 SQL can execute queries against a database
 SQL can retrieve data from a database
 SQL can insert records in a database
 SQL can update records in a database
 SQL can delete records from a database
 SQL can create new databases
 SQL can create new tables in a database
 SQL can create stored procedures in a database
 SQL can create views in a database
 SQL can set permissions on tables, procedures, and views

SQL is a Standard - BUT....
Although SQL is an ANSI (American National Standards Institute) standard,
there are different versions of the SQL language.

However, to be compliant with the ANSI standard, they all support at least
the major commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE)
in a similar manner.

Note: Most of the SQL database programs also have their own proprietary
extensions in addition to the SQL standard!

Using SQL in Your Web Site
To build a web site that shows data from a database, you will need:

 An RDBMS database program (i.e. MS Access, SQL Server, MySQL)
 To use a server-side scripting language, like PHP or ASP
 To use SQL to get the data you want
 To use HTML / CSS

RDBMS
RDBMS stands for Relational Database Management System.

RDBMS is the basis for SQL, and for all modern database systems such as MS
SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

The data in RDBMS is stored in database objects called tables.

A table is a collection of related data entries and it consists of columns and
rows.

SQL Syntax

Database Tables
A database most often contains one or more tables. Each table is identified
by a name (e.g. "Customers" or "Orders"). Tables contain records (rows)
with data.

In this tutorial we will use the well-known Northwind sample database
(included in MS Access and MS SQL Server).

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados y
helados

Ana Trujillo Avda. de la Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

The table above contains five records (one for each customer) and seven
columns (CustomerID, CustomerName, ContactName, Address, City,
PostalCode, and Country).

SQL Statements
Most of the actions you need to perform on a database are done with SQL
statements.

The following SQL statement selects all the records in the "Customers" table:

Example
SELECT * FROM Customers;

Try it Yourself »

In this tutorial we will teach you all about the different SQL statements.

Keep in Mind That...
 SQL keywords are NOT case sensitive: select is the same as SELECT

In this tutorial we will write all SQL keywords in upper-case.

Semicolon after SQL Statements?
Some database systems require a semicolon at the end of each SQL
statement.

Semicolon is the standard way to separate each SQL statement in database
systems that allow more than one SQL statement to be executed in the same
call to the server.

In this tutorial, we will use semicolon at the end of each SQL statement.

Some of The Most Important SQL
Commands

 SELECT - extracts data from a database
 UPDATE - updates data in a database
 DELETE - deletes data from a database
 INSERT INTO - inserts new data into a database
 CREATE DATABASE - creates a new database
 ALTER DATABASE - modifies a database
 CREATE TABLE - creates a new table
 ALTER TABLE - modifies a table
 DROP TABLE - deletes a table
 CREATE INDEX - creates an index (search key)
 DROP INDEX - deletes an index

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_all

SQL SELECT Statement

The SELECT statement is used to select data from a database.

The SQL SELECT Statement
The SELECT statement is used to select data from a database.

The result is stored in a result table, called the result-set.

SQL SELECT Syntax
SELECT column_name,column_name
FROM table_name;

and

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

SELECT * FROM table_name;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

SELECT Column Example
The following SQL statement selects the "CustomerName" and "City" columns
from the "Customers" table:

Example
SELECT CustomerName,City FROM Customers;

Try it Yourself »

SELECT * Example
The following SQL statement selects all the columns from the "Customers"
table:

Example
SELECT * FROM Customers;

Try it Yourself »

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_columns
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_all

Navigation in a Result-set
Most database software systems allow navigation in the result-set with
programming functions, like: Move-To-First-Record, Get-Record-Content,
Move-To-Next-Record, etc.

Programming functions like these are not a part of this tutorial. To learn
about accessing data with function calls, please visit our PHP tutorial.

SQL SELECT Statement
❮ Previous Next ❯

The SELECT statement is used to select data from a database.

The SQL SELECT Statement
The SELECT statement is used to select data from a database.

The result is stored in a result table, called the result-set.

SQL SELECT Syntax
SELECT column_name,column_name
FROM table_name;

and

SELECT * FROM table_name;

Demo Database

https://www.w3schools.com/php/default.asp
https://www.w3schools.com/sql/sql_syntax.asp
https://www.w3schools.com/sql/sql_distinct.asp

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

SELECT Column Example
The following SQL statement selects the "CustomerName" and "City" columns
from the "Customers" table:

Example
SELECT CustomerName,City FROM Customers;

Try it Yourself »

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_columns

SELECT * Example
The following SQL statement selects all the columns from the "Customers"
table:

Example
SELECT * FROM Customers;

Try it Yourself »

Navigation in a Result-set
Most database software systems allow navigation in the result-set with
programming functions, like: Move-To-First-Record, Get-Record-Content,
Move-To-Next-Record, etc.

Programming functions like these are not a part of this tutorial. To learn
about accessing data with function calls, please visit our PHP tutorial.

SQL WHERE Clause

The WHERE clause is used to filter records.

The SQL WHERE Clause
The WHERE clause is used to extract only those records that fulfill a specified
criterion.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_all
https://www.w3schools.com/php/default.asp

SQL WHERE Syntax
SELECT column_name,column_name
FROM table_name
WHERE column_name operator value;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

WHERE Clause Example
The following SQL statement selects all the customers from the country
"Mexico", in the "Customers" table:

Example
SELECT * FROM Customers
WHERE Country='Mexico';

Try it Yourself »

Text Fields vs. Numeric Fields
SQL requires single quotes around text values (most database systems will
also allow double quotes).

However, numeric fields should not be enclosed in quotes:

Example
SELECT * FROM Customers
WHERE CustomerID=1;

Try it Yourself »

Operators in The WHERE Clause
The following operators can be used in the WHERE clause:

Operator Description

= Equal

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_where
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_where_number

<> Not equal. Note: In some versions of SQL this operator may be
written as !=

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

IN To specify multiple possible values for a column

SQL AND & OR Operators

The AND & OR operators are used to filter records based on more than
one condition.

The SQL AND & OR Operators

The AND operator displays a record if both the first condition AND the second
condition are true.

The OR operator displays a record if either the first condition OR the second
condition is true.

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

AND Operator Example
The following SQL statement selects all customers from the country
"Germany" AND the city "Berlin", in the "Customers" table:

Example
SELECT * FROM Customers
WHERE Country='Germany'
AND City='Berlin';

Try it Yourself »

OR Operator Example
The following SQL statement selects all customers from the city "Berlin" OR
"München", in the "Customers" table:

Example
SELECT * FROM Customers
WHERE City='Berlin'
OR City='München';

Try it Yourself »

Combining AND & OR
You can also combine AND and OR (use parenthesis to form complex
expressions).

The following SQL statement selects all customers from the country
"Germany" AND the city must be equal to "Berlin" OR "München", in the
"Customers" table:

Example
SELECT * FROM Customers
WHERE Country='Germany'
AND (City='Berlin' OR City='München');

Try it Yourself »

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_where_and
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_where_or
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_where_and_or

SQL ORDER BY Keyword

The ORDER BY keyword is used to sort the result-set.

The SQL ORDER BY Keyword
The ORDER BY keyword is used to sort the result-set by one or more
columns.

The ORDER BY keyword sorts the records in ascending order by default. To
sort the records in a descending order, you can use the DESC keyword.

SQL ORDER BY Syntax
SELECT column_name, column_name
FROM table_name
ORDER BY column_name ASC|DESC, column_name ASC|DESC;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

ORDER BY Example
The following SQL statement selects all customers from the "Customers"
table, sorted by the "Country" column:

Example
SELECT * FROM Customers
ORDER BY Country;

Try it Yourself »

ORDER BY DESC Example
The following SQL statement selects all customers from the "Customers"
table, sorted DESCENDING by the "Country" column:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_orderby

Example
SELECT * FROM Customers
ORDER BY Country DESC;

Try it Yourself »

ORDER BY Several Columns Example
The following SQL statement selects all customers from the "Customers"
table, sorted by the "Country" and the "CustomerName" column:

Example
SELECT * FROM Customers
ORDER BY Country, CustomerName;

Try it Yourself »

ORDER BY Several Columns Example 2
The following SQL statement selects all customers from the "Customers"
table, sorted ascending by the "Country" and descending by the
"CustomerName" column:

Example
SELECT * FROM Customers
ORDER BY Country ASC, CustomerName DESC;

Try it Yourself »

SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_orderby_desc
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_orderby2
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_orderby3

The SQL INSERT INTO Statement
The INSERT INTO statement is used to insert new records in a table.

SQL INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two forms.

The first form does not specify the column names where the data will be
inserted, only their values:

INSERT INTO table_name
VALUES (value1,value2,value3,...);

The second form specifies both the column names and the values to be
inserted:

INSERT INTO table_name (column1,column2,column3,...)
VALUES (value1,value2,value3,...);

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

87 Wartian Herkku Pirkko
Koskitalo

Torikatu 38 Oulu 90110 Finland

88 Wellington
Importadora

Paula Parente Rua do Mercado,
12

Resende 08737-363 Brazil

89 White Clover
Markets

Karl Jablonski 305 - 14th Ave. S.
Suite 3B

Seattle 98128 USA

90 Wilman Kala Matti
Karttunen

Keskuskatu 45 Helsinki 21240 Finland

91 Wolski Zbyszek ul. Filtrowa 68 Walla 01-012 Poland

INSERT INTO Example
Assume we wish to insert a new row in the "Customers" table.

We can use the following SQL statement:

Example
INSERT INTO Customers (CustomerName, ContactName, Address, City,
PostalCode, Country)
VALUES ('Cardinal','Tom B. Erichsen','Skagen
21','Stavanger','4006','Norway');

Try it Yourself »

The selection from the "Customers" table will now look like this:

CustomerID CustomerName ContactName Address City PostalCode Country

87 Wartian Herkku Pirkko
Koskitalo

Torikatu 38 Oulu 90110 Finland

https://www.w3schools.com/sql/trysql.asp?filename=trysql_insert_colname

88 Wellington
Importadora

Paula Parente Rua do Mercado,
12

Resende 08737-363 Brazil

89 White Clover
Markets

Karl Jablonski 305 - 14th Ave. S.
Suite 3B

Seattle 98128 USA

90 Wilman Kala Matti
Karttunen

Keskuskatu 45 Helsinki 21240 Finland

91 Wolski Zbyszek ul. Filtrowa 68 Walla 01-012 Poland

92 Cardinal Tom B.
Erichsen

Skagen 21 Stavanger 4006 Norway

Did you notice that we did not insert any number into the
CustomerID field?
The CustomerID column is automatically updated with a unique number for
each record in the table.

Insert Data Only in Specified Columns
It is also possible to only insert data in specific columns.

The following SQL statement will insert a new row, but only insert data in the
"CustomerName", "City", and "Country" columns (and the CustomerID field
will of course also be updated automatically):

Example
INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

Try it Yourself »

The selection from the "Customers" table will now look like this:

CustomerID CustomerName ContactName Address City PostalCode Country

87 Wartian Herkku Pirkko
Koskitalo

Torikatu 38 Oulu 90110 Finland

88 Wellington
Importadora

Paula Parente Rua do Mercado,
12

Resende 08737-363 Brazil

89 White Clover
Markets

Karl Jablonski 305 - 14th Ave. S.
Suite 3B

Seattle 98128 USA

90 Wilman Kala Matti
Karttunen

Keskuskatu 45 Helsinki 21240 Finland

91 Wolski Zbyszek ul. Filtrowa 68 Walla 01-012 Poland

92 Cardinal null null Stavanger null Norway

SQL UPDATE Statement
Example

Change the value of the "City" column of a record in the "Customers" table:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_insert_cols

UPDATE Customers
SET City='Hamburg'
WHERE CustomerID=1;

Try it Yourself »

The SQL UPDATE Statement
The UPDATE statement is used to update existing records in a table.

Syntax
UPDATE table_name
SET column1=value1,column2=value2,...
WHERE some_column=some_value;

Notice the WHERE clause in the SQL UPDATE statement!
The WHERE clause specifies which record or records that should be updated.
If you omit the WHERE clause, all records will be updated!

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

https://www.w3schools.com/sql/trysql.asp?filename=trysql_update_1

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

UPDATE Multiple Columns
To update more than one column, use a comma as seperator.

Assume we wish to update the customer "Alfreds Futterkiste" with a new
contact person and city.

We use the following SQL statement:

Example
UPDATE Customers
SET ContactName='Alfred Schmidt', City='Frankfurt'
WHERE CustomerID=1;

Try it Yourself »

The selection from the "Customers" table will now look like this:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Alfred Schmidt Obere Str. 57 Frankfurt 12209 Germany

https://www.w3schools.com/sql/trysql.asp?filename=trysql_update_2

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

UPDATE Multiple Records
In an update statement, it is the WHERE clause that determines how many
records which will be updated.

The WHERE clause: WHERE Country='Mexico' will update all records which
have the value "Mexico" in the field "Country".

Example
UPDATE Customers
SET ContactName='Juan'
WHERE Country='Mexico';

Try it Yourself »

The selection from the "Customers" table will now look like this:

CustomerID CustomerName ContactName Address City PostalCode Country

https://www.w3schools.com/sql/trysql.asp?filename=trysql_update_3

1 Alfreds Futterkiste Alfred Schmidt Obere Str. 57 Frankfurt 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Juan Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Juan Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

Update Warning!
Be careful when updating records. If we omit the WHERE clause, ALL records
will be updated:

Example
UPDATE Customers
SET ContactName='Juan';

Try it Yourself »

The selection from the "Customers" table will now look like this:

CustomerID CustomerName ContactName Address City PostalCode Country

https://www.w3schools.com/sql/trysql.asp?filename=trysql_update_4

1 Alfreds Futterkiste Juan Obere Str. 57 Frankfurt 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Juan Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Juan Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Juan 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Juan Berguvsvägen 8 Luleå S-958 22 Sweden

SQL DELETE Statement

The DELETE statement is used to delete records in a table.

The SQL DELETE Statement
The DELETE statement is used to delete rows in a table.

SQL DELETE Syntax
DELETE FROM table_name
WHERE some_column=some_value;

Notice the WHERE clause in the SQL DELETE statement!
The WHERE clause specifies which record or records that should be deleted.
If you omit the WHERE clause, all records will be deleted!

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

SQL DELETE Example
Assume we wish to delete the customer "Alfreds Futterkiste" from the
"Customers" table.

We use the following SQL statement:

Example
DELETE FROM Customers
WHERE CustomerName='Alfreds Futterkiste' AND ContactName='Maria Anders';

Try it Yourself »

The "Customers" table will now look like this:

CustomerID CustomerName ContactName Address City PostalCode Country

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

https://www.w3schools.com/sql/trysql.asp?filename=trysql_delete

Delete All Data
It is possible to delete all rows in a table without deleting the table. This
means that the table structure, attributes, and indexes will be intact:

DELETE FROM table_name;

or

DELETE * FROM table_name;

Note: Be very careful when deleting records. You cannot undo this
statement!

SQL SELECT TOP Clause

The SQL SELECT TOP Clause
The SELECT TOP clause is used to specify the number of records to return.

The SELECT TOP clause can be very useful on large tables with thousands of
records. Returning a large number of records can impact on performance.

Note: Not all database systems support the SELECT TOP clause.

SQL Server / MS Access Syntax
SELECT TOP number|percent column_name(s)
FROM table_name;

SQL SELECT TOP Equivalent in MySQL and
Oracle
MySQL Syntax
SELECT column_name(s)
FROM table_name
LIMIT number;

Example
SELECT *
FROM Persons
LIMIT 5;

Oracle Syntax
SELECT column_name(s)
FROM table_name
WHERE ROWNUM <= number;

Example
SELECT *
FROM Persons
WHERE ROWNUM <=5;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

SQL SELECT TOP Example
The following SQL statement selects the two first records from the
"Customers" table:

Example
SELECT TOP 2 * FROM Customers;

Try it Yourself »

SQL SELECT TOP PERCENT Example
The following SQL statement selects the first 50% of the records from the
"Customers" table:

Example
SELECT TOP 50 PERCENT * FROM Customers;

Try it Yourself »

SQL LIKE Operator

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_top&ss=-1
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_top_percent&ss=-1

The LIKE operator is used in a WHERE clause to search for a specified
pattern in a column.

The SQL LIKE Operator
The LIKE operator is used to search for a specified pattern in a column.

SQL LIKE Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

SQL LIKE Operator Examples
The following SQL statement selects all customers with a City starting with
the letter "s":

Example
SELECT * FROM Customers
WHERE City LIKE 's%';

Try it Yourself »

Tip: The "%" sign is used to define wildcards (missing letters) both before
and after the pattern. You will learn more about wildcards in the next
chapter.

The following SQL statement selects all customers with a City ending with the
letter "s":

Example
SELECT * FROM Customers
WHERE City LIKE '%s';

Try it Yourself »

The following SQL statement selects all customers with a Country containing
the pattern "land":

Example
SELECT * FROM Customers
WHERE Country LIKE '%land%';

Try it Yourself »

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_like
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_like_ending
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_like_pattern

Using the NOT keyword allows you to select records that do NOT match the
pattern.

The following SQL statement selects all customers with Country NOT
containing the pattern "land":

Example
SELECT * FROM Customers
WHERE Country NOT LIKE '%land%';

SQL Wildcards

A wildcard character can be used to substitute for any other character(s)
in a string.

SQL Wildcard Characters
In SQL, wildcard characters are used with the SQL LIKE operator.

SQL wildcards are used to search for data within a table.

With SQL, the wildcards are:

Wildcard Description

% A substitute for zero or more characters

_ A substitute for a single character

[charlist] Sets and ranges of characters to match

[^charlist]
or
[!charlist]

Matches only a character NOT specified within the brackets

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

Using the SQL % Wildcard
The following SQL statement selects all customers with a City starting with
"ber":

Example
SELECT * FROM Customers
WHERE City LIKE 'ber%';

Try it Yourself »

The following SQL statement selects all customers with a City containing the
pattern "es":

Example
SELECT * FROM Customers
WHERE City LIKE '%es%';

Try it Yourself »

Using the SQL _ Wildcard
The following SQL statement selects all customers with a City starting with
any character, followed by "erlin":

Example
SELECT * FROM Customers
WHERE City LIKE '_erlin';

Try it Yourself »

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_percent
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_percent_pattern
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_underscore

The following SQL statement selects all customers with a City starting with
"L", followed by any character, followed by "n", followed by any character,
followed by "on":

Example
SELECT * FROM Customers
WHERE City LIKE 'L_n_on';

Try it Yourself »

Using the SQL [charlist] Wildcard
The following SQL statement selects all customers with a City starting with
"b", "s", or "p":

Example
SELECT * FROM Customers
WHERE City LIKE '[bsp]%';

Try it Yourself »

The following SQL statement selects all customers with a City starting with
"a", "b", or "c":

Example
SELECT * FROM Customers
WHERE City LIKE '[a-c]%';

Try it Yourself »

The two following SQL statements selects all customers with a City NOT
starting with "b", "s", or "p":

Example
SELECT * FROM Customers
WHERE City LIKE '[!bsp]%';

Try it Yourself »

Or:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_underscore2
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_charlist&ss=-1
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_charlist2&ss=-1
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_not_charlist&ss=-1

Example
SELECT * FROM Customers
WHERE City NOT LIKE '[bsp]%';

Try it Yourself »

SQL IN Operator

The IN Operator
The IN operator allows you to specify multiple values in a WHERE clause.

SQL IN Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1,value2,...);

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_wildcard_not_charlist2&ss=-1

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

5 Berglunds snabbköp Christina
Berglund

Berguvsvägen 8 Luleå S-958 22 Sweden

IN Operator Example
The following SQL statement selects all customers with a City of "Paris" or
"London":

Example
SELECT * FROM Customers
WHERE City IN ('Paris','London');

Try it Yourself »

SQL BETWEEN Operator

The BETWEEN operator is used to select values within a range.

The SQL BETWEEN Operator

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_in

The BETWEEN operator selects values within a range. The values can be
numbers, text, or dates.

SQL BETWEEN Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Products" table:

ProductID ProductName SupplierID CategoryID Unit Price

1 Chais 1 1 10 boxes x 20 bags 18

2 Chang 1 1 24 - 12 oz bottles 19

3 Aniseed Syrup 1 2 12 - 550 ml bottles 10

4 Chef Anton's Cajun Seasoning 1 2 48 - 6 oz jars 22

5 Chef Anton's Gumbo Mix 1 2 36 boxes 21.35

BETWEEN Operator Example

The following SQL statement selects all products with a price BETWEEN 10
and 20:

Example
SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;

Try it Yourself »

NOT BETWEEN Operator Example
To display the products outside the range of the previous example, use NOT
BETWEEN:

Example
SELECT * FROM Products
WHERE Price NOT BETWEEN 10 AND 20;

Try it Yourself »

BETWEEN Operator with IN Example
The following SQL statement selects all products with a price BETWEEN 10
and 20, but products with a CategoryID of 1,2, or 3 should not be displayed:

Example
SELECT * FROM Products
WHERE (Price BETWEEN 10 AND 20)
AND NOT CategoryID IN (1,2,3);

Try it Yourself »

BETWEEN Operator with Text Value Example

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_between
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_not_between
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_between_in

The following SQL statement selects all products with a ProductName
beginning with any of the letter BETWEEN 'C' and 'M':

Example
SELECT * FROM Products
WHERE ProductName BETWEEN 'C' AND 'M';

Try it Yourself »

NOT BETWEEN Operator with Text Value
Example
The following SQL statement selects all products with a ProductName
beginning with any of the letter NOT BETWEEN 'C' and 'M':

Example
SELECT * FROM Products
WHERE ProductName NOT BETWEEN 'C' AND 'M';

Try it Yourself »

Sample Table
Below is a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 7/4/1996 3

10249 81 6 7/5/1996 1

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_between_text
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_not_between_text

10250 34 4 7/8/1996 2

10251 84 3 7/9/1996 1

10252 76 4 7/10/1996 2

BETWEEN Operator with Date Value Example
The following SQL statement selects all orders with an OrderDate BETWEEN
'04-July-1996' and '09-July-1996':

Example
SELECT * FROM Orders
WHERE OrderDate BETWEEN #07/04/1996# AND #07/09/1996#;

Try it Yourself »

Notice that the BETWEEN operator can produce different result in
different databases!
In some databases, BETWEEN selects fields that are between and excluding
the test values.
In other databases, BETWEEN selects fields that are between and including
the test values.
And in other databases, BETWEEN selects fields between the test values,
including the first test value and excluding the last test value.

Therefore: Check how your database treats the BETWEEN operator!

SQL Aliases

SQL aliases are used to temporarily rename a table or a column heading.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_between_date&ss=-1

SQL Aliases
SQL aliases are used to give a database table, or a column in a table, a
temporary name.

Basically aliases are created to make column names more readable.

SQL Alias Syntax for Columns
SELECT column_name AS alias_name
FROM table_name;

SQL Alias Syntax for Tables
SELECT column_name(s)
FROM table_name AS alias_name;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

4 Around the Horn Thomas Hardy 120 Hanover Sq. London WA1 1DP UK

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10354 58 8 1996-11-14 3

10355 4 6 1996-11-15 1

10356 86 6 1996-11-18 2

Alias Example for Table Columns
The following SQL statement specifies two aliases, one for the
CustomerName column and one for the ContactName column. Tip: It
requires double quotation marks or square brackets if the column name
contains spaces:

Example
SELECT CustomerName AS Customer, ContactName AS [Contact Person]
FROM Customers;

Try it Yourself »

In the following SQL statement we combine four columns (Address, City,
PostalCode, and Country) and create an alias named "Address":

Example
SELECT CustomerName, Address+', '+City+', '+PostalCode+',
'+Country AS Address
FROM Customers;

Try it Yourself »

Note: To get the SQL statement above to work in MySQL use the following:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_alias_column
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_alias_column2&ss=-1

SELECT CustomerName, CONCAT(Address,', ',City,', ',PostalCode,',
',Country) AS Address
FROM Customers;

Alias Example for Tables
The following SQL statement selects all the orders from the customer with
CustomerID=4 (Around the Horn). We use the "Customers" and "Orders"
tables, and give them the table aliases of "c" and "o" respectively (Here we
have used aliases to make the SQL shorter):

Example
SELECT o.OrderID, o.OrderDate, c.CustomerName
FROM Customers AS c, Orders AS o
WHERE c.CustomerName="Around the Horn" AND c.CustomerID=o.CustomerID;

Try it Yourself »

The same SQL statement without aliases:

Example
SELECT Orders.OrderID, Orders.OrderDate, Customers.CustomerName
FROM Customers, Orders
WHERE Customers.CustomerName="Around the
Horn" AND Customers.CustomerID=Orders.CustomerID;

Try it Yourself »

Aliases can be useful when:

 There are more than one table involved in a query
 Functions are used in the query
 Column names are big or not very readable
 Two or more columns are combined together

SQL Joins

SQL joins are used to combine rows from two or more tables.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_alias_table
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_alias_no

SQL JOIN
An SQL JOIN clause is used to combine rows from two or more tables, based
on a common field between them.

The most common type of join is: SQL INNER JOIN (simple join). An SQL
INNER JOIN returns all rows from multiple tables where the join condition is
met.

Let's look at a selection from the "Orders" table:

OrderID CustomerID OrderDate

10308 2 1996-09-18

10309 37 1996-09-19

10310 77 1996-09-20

Then, have a look at a selection from the "Customers" table:

CustomerID CustomerName ContactName Country

1 Alfreds Futterkiste Maria Anders Germany

2 Ana Trujillo Emparedados y helados Ana Trujillo Mexico

3 Antonio Moreno Taquería Antonio Moreno Mexico

Notice that the "CustomerID" column in the "Orders" table refers to the
"CustomerID" in the "Customers" table. The relationship between the two
tables above is the "CustomerID" column.

Then, if we run the following SQL statement (that contains an INNER JOIN):

Example
SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate
FROM Orders
INNER JOIN Customers
ON Orders.CustomerID=Customers.CustomerID;

Try it Yourself »

it will produce something like this:

OrderID CustomerName OrderDate

10308 Ana Trujillo Emparedados y helados 9/18/1996

10365 Antonio Moreno Taquería 11/27/1996

10383 Around the Horn 12/16/1996

10355 Around the Horn 11/15/1996

10278 Berglunds snabbköp 8/12/1996

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_join

Different SQL JOINs
Before we continue with examples, we will list the types of the different SQL
JOINs you can use:

 INNER JOIN: Returns all rows when there is at least one match in
BOTH tables

 LEFT JOIN: Return all rows from the left table, and the matched rows
from the right table

 RIGHT JOIN: Return all rows from the right table, and the matched
rows from the left table

 FULL JOIN: Return all rows when there is a match in ONE of the
tables

SQL INNER JOIN Keyword

SQL INNER JOIN Keyword
The INNER JOIN keyword selects all rows from both tables as long as there is
a match between the columns in both tables.

SQL INNER JOIN Syntax
SELECT column_name(s)
FROM table1
INNER JOIN table2
ON table1.column_name=table2.column_name;

or:

SELECT column_name(s)
FROM table1
JOIN table2
ON table1.column_name=table2.column_name;

PS! INNER JOIN is the same as JOIN.

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL INNER JOIN Example
The following SQL statement will return all customers with orders:

Example
SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
INNER JOIN Orders
ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

Try it Yourself »

Note: The INNER JOIN keyword selects all rows from both tables as long as
there is a match between the columns. If there are rows in the "Customers"
table that do not have matches in "Orders", these customers will NOT be
listed.

SQL LEFT JOIN Keyword

SQL LEFT JOIN Keyword
The LEFT JOIN keyword returns all rows from the left table (table1), with the
matching rows in the right table (table2). The result is NULL in the right side
when there is no match.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_join_inner

SQL LEFT JOIN Syntax
SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name=table2.column_name;

or:

SELECT column_name(s)
FROM table1
LEFT OUTER JOIN table2
ON table1.column_name=table2.column_name;

PS! In some databases LEFT JOIN is called LEFT OUTER JOIN.

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL LEFT JOIN Example
The following SQL statement will return all customers, and any orders they
might have:

Example
SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

Try it Yourself »

Note: The LEFT JOIN keyword returns all the rows from the left table
(Customers), even if there are no matches in the right table (Orders).

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_join_left

SQL RIGHT JOIN Keyword

SQL RIGHT JOIN Keyword
The RIGHT JOIN keyword returns all rows from the right table (table2), with
the matching rows in the left table (table1). The result is NULL in the left side
when there is no match.

SQL RIGHT JOIN Syntax
SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name=table2.column_name;

or:

SELECT column_name(s)
FROM table1
RIGHT OUTER JOIN table2
ON table1.column_name=table2.column_name;

PS! In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

And a selection from the "Employees" table:

EmployeeID LastName FirstName BirthDate Photo Notes

1 Davolio Nancy 12/8/1968 EmpID1.pic Education includes a BA in psychology.....

2 Fuller Andrew 2/19/1952 EmpID2.pic Andrew received his BTS commercial and....

3 Leverling Janet 8/30/1963 EmpID3.pic Janet has a BS degree in chemistry....

SQL RIGHT JOIN Example
The following SQL statement will return all employees, and any orders they
have placed:

Example
SELECT Orders.OrderID, Employees.FirstName
FROM Orders

RIGHT JOIN Employees
ON Orders.EmployeeID=Employees.EmployeeID
ORDER BY Orders.OrderID;

Try it Yourself »

Note: The RIGHT JOIN keyword returns all the rows from the right table
(Employees), even if there are no matches in the left table (Orders).

SQL FULL OUTER JOIN Keyword
❮ Previous Next ❯

SQL FULL OUTER JOIN Keyword
The FULL OUTER JOIN keyword returns all rows from the left table (table1)
and from the right table (table2).

The FULL OUTER JOIN keyword combines the result of both LEFT and RIGHT
joins.

SQL FULL OUTER JOIN Syntax
SELECT column_name(s)
FROM table1
FULL OUTER JOIN table2
ON table1.column_name=table2.column_name;

Demo Database

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_join_right&ss=-1
https://www.w3schools.com/sql/sql_join_right.asp
https://www.w3schools.com/sql/sql_union.asp

In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

And a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10308 2 7 1996-09-18 3

10309 37 3 1996-09-19 1

10310 77 8 1996-09-20 2

SQL FULL OUTER JOIN Example

The following SQL statement selects all customers, and all orders:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders
ON Customers.CustomerID=Orders.CustomerID
ORDER BY Customers.CustomerName;

A selection from the result set may look like this:

CustomerName OrderID

Alfreds Futterkiste

Ana Trujillo Emparedados y helados 10308

Antonio Moreno Taquería 10365

 10382

 10351

Note: The FULL OUTER JOIN keyword returns all the rows from the left table
(Customers), and all the rows from the right table (Orders). If there are rows
in "Customers" that do not have matches in "Orders", or if there are rows in
"Orders" that do not have matches in "Customers", those rows will be listed
as well.

SQL UNION Operator

The SQL UNION operator combines the result of two or more SELECT
statements.

The SQL UNION Operator
The UNION operator is used to combine the result-set of two or more SELECT
statements.

Notice that each SELECT statement within the UNION must have the same
number of columns. The columns must also have similar data types. Also,
the columns in each SELECT statement must be in the same order.

SQL UNION Syntax
SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;

Note: The UNION operator selects only distinct values by default. To allow
duplicate values, use the ALL keyword with UNION.

SQL UNION ALL Syntax
SELECT column_name(s) FROM table1
UNION ALL
SELECT column_name(s) FROM table2;

PS: The column names in the result-set of a UNION are usually equal to the
column names in the first SELECT statement in the UNION.

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

And a selection from the "Suppliers" table:

SupplierID SupplierName ContactName Address City PostalCode Country

1 Exotic Liquid Charlotte
Cooper

49 Gilbert
St.

London EC1 4SD UK

2 New Orleans Cajun
Delights

Shelley Burke P.O. Box
78934

New
Orleans

70117 USA

3 Grandma Kelly's
Homestead

Regina Murphy 707 Oxford
Rd.

Ann Arbor 48104 USA

SQL UNION Example
The following SQL statement selects all the different cities (only distinct
values) from the "Customers" and the "Suppliers" tables:

Example
SELECT City FROM Customers
UNION
SELECT City FROM Suppliers
ORDER BY City;

Try it Yourself »

Note: UNION cannot be used to list ALL cities from the two tables. If several
customers and suppliers share the same city, each city will only be listed
once. UNION selects only distinct values. Use UNION ALL to also select
duplicate values!

SQL UNION ALL Example
The following SQL statement uses UNION ALL to select all (duplicate values
also) cities from the "Customers" and "Suppliers" tables:

Example
SELECT City FROM Customers
UNION ALL
SELECT City FROM Suppliers
ORDER BY City;

Try it Yourself »

SQL UNION ALL With WHERE
The following SQL statement uses UNION ALL to select all (duplicate values
also) German cities from the "Customers" and "Suppliers" tables:

Example
SELECT City, Country FROM Customers
WHERE Country='Germany'
UNION ALL
SELECT City, Country FROM Suppliers
WHERE Country='Germany'
ORDER BY City;

Try it Yourself »

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_union
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_union_all
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_union_all2

SQL SELECT INTO Statement

With SQL, you can copy information from one table into another.

The SELECT INTO statement copies data from one table and inserts it into
a new table.

The SQL SELECT INTO Statement
The SELECT INTO statement selects data from one table and inserts it into a
new table.

SQL SELECT INTO Syntax

We can copy all columns into the new table:

SELECT *
INTO newtable [IN externaldb]
FROM table1;

Or we can copy only the columns we want into the new table:

SELECT column_name(s)
INTO newtable [IN externaldb]
FROM table1;

The new table will be created with the column-names and types as defined in
the SELECT statement. You can apply new names using the AS clause.

SQL SELECT INTO Examples
Create a backup copy of Customers:

SELECT *
INTO CustomersBackup2013
FROM Customers;

Use the IN clause to copy the table into another database:

SELECT *
INTO CustomersBackup2013 IN 'Backup.mdb'
FROM Customers;

Copy only a few columns into the new table:

SELECT CustomerName, ContactName
INTO CustomersBackup2013
FROM Customers;

Copy only the German customers into the new table:

SELECT *
INTO CustomersBackup2013
FROM Customers
WHERE Country='Germany';

Copy data from more than one table into the new table:

SELECT Customers.CustomerName, Orders.OrderID
INTO CustomersOrderBackup2013
FROM Customers
LEFT JOIN Orders
ON Customers.CustomerID=Orders.CustomerID;

Tip: The SELECT INTO statement can also be used to create a new, empty
table using the schema of another. Just add a WHERE clause that causes the
query to return no data:

SELECT *
INTO newtable
FROM table1
WHERE 1=0;

SQL INSERT INTO
SELECT Statement

With SQL, you can copy information from one table into another.

The INSERT INTO SELECT statement copies data from one table and
inserts it into an existing table.

The SQL INSERT INTO SELECT Statement
The INSERT INTO SELECT statement selects data from one table and inserts
it into an existing table. Any existing rows in the target table are unaffected.

SQL INSERT INTO SELECT Syntax

We can copy all columns from one table to another, existing table:

INSERT INTO table2
SELECT * FROM table1;

Or we can copy only the columns we want to into another, existing table:

INSERT INTO table2
(column_name(s))
SELECT column_name(s)
FROM table1;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Customers" table:

CustomerID CustomerName ContactName Address City PostalCode Country

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio
Moreno

Mataderos 2312 México
D.F.

05023 Mexico

And a selection from the "Suppliers" table:

SupplierID SupplierName ContactName Address City Postal
Code

Country Phone

1 Exotic Liquid Charlotte
Cooper

49 Gilbert
St.

Londona EC1 4SD UK (171)
555-2222

2 New Orleans Cajun
Delights

Shelley Burke P.O. Box
78934

New
Orleans

70117 USA (100)
555-4822

3 Grandma Kelly's
Homestead

Regina
Murphy

707
Oxford Rd.

Ann Arbor 48104 USA (313)
555-5735

SQL INSERT INTO SELECT Examples
Copy only a few columns from "Suppliers" into "Customers":

Example
INSERT INTO Customers (CustomerName, Country)
SELECT SupplierName, Country FROM Suppliers;

Try it Yourself »

https://www.w3schools.com/sql/trysql.asp?filename=trysql_insert_into_select

Copy only the German suppliers into "Customers":

Example
INSERT INTO Customers (CustomerName, Country)
SELECT SupplierName, Country FROM Suppliers
WHERE Country='Germany';

Try it Yourself »

SQL CREATE DATABASE Statement
❮ Previous Next ❯

The SQL CREATE DATABASE Statement
The CREATE DATABASE statement is used to create a database.

SQL CREATE DATABASE Syntax
CREATE DATABASE dbname;

SQL CREATE DATABASE Example
The following SQL statement creates a database called "my_db":

CREATE DATABASE my_db;

Database tables can be added with the CREATE TABLE statement.

SQL CREATE TABLE Statement

The SQL CREATE TABLE Statement

https://www.w3schools.com/sql/trysql.asp?filename=trysql_insert_into_select_where
https://www.w3schools.com/sql/sql_insert_into_select.asp
https://www.w3schools.com/sql/sql_create_table.asp

The CREATE TABLE statement is used to create a table in a database.

Tables are organized into rows and columns; and each table must have a
name.

SQL CREATE TABLE Syntax
CREATE TABLE table_name
(
column_name1 data_type(size),
column_name2 data_type(size),
column_name3 data_type(size),
....
);

The column_name parameters specify the names of the columns of the table.

The data_type parameter specifies what type of data the column can hold
(e.g. varchar, integer, decimal, date, etc.).

The size parameter specifies the maximum length of the column of the table.

Tip: For an overview of the data types available in MS Access, MySQL, and
SQL Server, go to our complete Data Types Reference.

SQL CREATE TABLE Example
Now we want to create a table called "Persons" that contains five columns:
PersonID, LastName, FirstName, Address, and City.

We use the following CREATE TABLE statement:

Example
CREATE TABLE Persons
(
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
);

Try it Yourself »

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/trysql.asp?filename=trysql_create_table

The PersonID column is of type int and will hold an integer.

The LastName, FirstName, Address, and City columns are of type varchar
and will hold characters, and the maximum length for these fields is 255
characters.

The empty "Persons" table will now look like this:

PersonID LastName FirstName Address City

Tip: The empty table can be filled with data with the INSERT INTO
statement.

SQL Constraints

SQL Constraints
SQL constraints are used to specify rules for the data in a table.

 If there is any violation between the constraint and the data action, the
action is aborted by the constraint.

Constraints can be specified when the table is created (inside the CREATE
TABLE statement) or after the table is created (inside the ALTER TABLE
statement).

SQL CREATE TABLE + CONSTRAINT Syntax
CREATE TABLE table_name
(
column_name1 data_type(size) constraint_name,
column_name2 data_type(size) constraint_name,

column_name3 data_type(size) constraint_name,
....
);

 In SQL, we have the following constraints:

 NOT NULL - Indicates that a column cannot store NULL value
 UNIQUE - Ensures that each row for a column must have a unique

value
 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Ensures

that a column (or combination of two or more columns) have a unique
identity which helps to find a particular record in a table more easily
and quickly

 FOREIGN KEY - Ensure the referential integrity of the data in one
table to match values in another table

 CHECK - Ensures that the value in a column meets a specific condition
 DEFAULT - Specifies a default value for a column

The next chapters will describe each constraint in detail.

SQL NOT NULL Constraint

By default, a table column can hold NULL values.

SQL NOT NULL Constraint
The NOT NULL constraint enforces a column to NOT accept NULL values.

The NOT NULL constraint enforces a field to always contain a value. This
means that you cannot insert a new record, or update a record without
adding a value to this field.

The following SQL enforces the "P_Id" column and the "LastName" column to
not accept NULL values:

Example
CREATE TABLE PersonsNotNull
(
P_Id int NOT NULL,

LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

Try it Yourself »

SQL UNIQUE Constraint

SQL UNIQUE Constraint
The UNIQUE constraint uniquely identifies each record in a database table.

The UNIQUE and PRIMARY KEY constraints both provide a guarantee for
uniqueness for a column or set of columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on
it.

Note that you can have many UNIQUE constraints per table, but only one
PRIMARY KEY constraint per table.

SQL UNIQUE Constraint on CREATE TABLE
The following SQL creates a UNIQUE constraint on the "P_Id" column when
the "Persons" table is created:

SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL UNIQUE,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

https://www.w3schools.com/sql/trysql.asp?filename=trysql_create_constraint_not_null

MySQL:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
UNIQUE (P_Id)
)

To allow naming of a UNIQUE constraint, and for defining a UNIQUE
constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName)
)

SQL UNIQUE Constraint on ALTER TABLE
To create a UNIQUE constraint on the "P_Id" column when the table is
already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD UNIQUE (P_Id)

To allow naming of a UNIQUE constraint, and for defining a UNIQUE
constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT uc_PersonID UNIQUE (P_Id,LastName)

SQL PRIMARY KEY Constraint
❮ Previous Next ❯

SQL PRIMARY KEY Constraint
The PRIMARY KEY constraint uniquely identifies each record in a database
table.

Primary keys must contain UNIQUE values.

A primary key column cannot contain NULL values.

Most tables should have a primary key, and each table can have only ONE
primary key.

SQL PRIMARY KEY Constraint on CREATE
TABLE
The following SQL creates a PRIMARY KEY on the "P_Id" column when the
"Persons" table is created:

MySQL:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (P_Id)
)

SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL PRIMARY KEY,

https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_foreignkey.asp

LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY
KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)
)

Note: In the example above there is only ONE PRIMARY KEY (pk_PersonID).
However, the VALUE of the primary key is made up of TWO COLUMNS (P_Id
+ LastName).

SQL PRIMARY KEY Constraint on ALTER
TABLE
To create a PRIMARY KEY constraint on the "P_Id" column when the table is
already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD PRIMARY KEY (P_Id)

To allow naming of a PRIMARY KEY constraint, and for defining a PRIMARY
KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT pk_PersonID PRIMARY KEY (P_Id,LastName)

Note: If you use the ALTER TABLE statement to add a primary key, the
primary key column(s) must already have been declared to not contain NULL
values (when the table was first created).

To DROP a PRIMARY KEY Constraint
To drop a PRIMARY KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
DROP PRIMARY KEY

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT pk_PersonID

SQL FOREIGN KEY Constraint
❮ Previous Next ❯

SQL FOREIGN KEY Constraint
A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Let's illustrate the foreign key with an example. Look at the following two
tables:

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_check.asp

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

The "Orders" table:

O_Id OrderNo P_Id

1 77895 3

2 44678 3

3 22456 2

4 24562 1

Note that the "P_Id" column in the "Orders" table points to the "P_Id" column
in the "Persons" table.

The "P_Id" column in the "Persons" table is the PRIMARY KEY in the
"Persons" table.

The "P_Id" column in the "Orders" table is a FOREIGN KEY in the "Orders"
table.

The FOREIGN KEY constraint is used to prevent actions that would destroy
links between tables.

The FOREIGN KEY constraint also prevents invalid data from being inserted
into the foreign key column, because it has to be one of the values contained
in the table it points to.

SQL FOREIGN KEY Constraint on CREATE
TABLE
The following SQL creates a FOREIGN KEY on the "P_Id" column when the
"Orders" table is created:

MySQL:

CREATE TABLE Orders
(
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
PRIMARY KEY (O_Id),
FOREIGN KEY (P_Id) REFERENCES Persons(P_Id)
)

SQL Server / Oracle / MS Access:

CREATE TABLE Orders
(
O_Id int NOT NULL PRIMARY KEY,
OrderNo int NOT NULL,
P_Id int FOREIGN KEY REFERENCES Persons(P_Id)
)

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN
KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Orders
(
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
PRIMARY KEY (O_Id),
CONSTRAINT fk_PerOrders FOREIGN KEY (P_Id)
REFERENCES Persons(P_Id)
)

SQL FOREIGN KEY Constraint on ALTER
TABLE

To create a FOREIGN KEY constraint on the "P_Id" column when the "Orders"
table is already created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD FOREIGN KEY (P_Id)
REFERENCES Persons(P_Id)

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN
KEY constraint on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Orders
ADD CONSTRAINT fk_PerOrders
FOREIGN KEY (P_Id)
REFERENCES Persons(P_Id)

To DROP a FOREIGN KEY Constraint
To drop a FOREIGN KEY constraint, use the following SQL:

MySQL:

ALTER TABLE Orders
DROP FOREIGN KEY fk_PerOrders

SQL Server / Oracle / MS Access:

ALTER TABLE Orders
DROP CONSTRAINT fk_PerOrders

SQL CHECK Constraint

SQL CHECK Constraint
The CHECK constraint is used to limit the value range that can be placed in a
column.

If you define a CHECK constraint on a single column it allows only certain
values for this column.

If you define a CHECK constraint on a table it can limit the values in certain
columns based on values in other columns in the row.

SQL CHECK Constraint on CREATE TABLE
The following SQL creates a CHECK constraint on the "P_Id" column when
the "Persons" table is created. The CHECK constraint specifies that the
column "P_Id" must only include integers greater than 0.

MySQL:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255),
CHECK (P_Id>0)
)

SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL CHECK (P_Id>0),
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

To allow naming of a CHECK constraint, and for defining a CHECK constraint
on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),

City varchar(255),
CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes')
)

SQL CHECK Constraint on ALTER TABLE
To create a CHECK constraint on the "P_Id" column when the table is already
created, use the following SQL:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CHECK (P_Id>0)

To allow naming of a CHECK constraint, and for defining a CHECK constraint
on multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ADD CONSTRAINT chk_Person CHECK (P_Id>0 AND City='Sandnes')

To DROP a CHECK Constraint
To drop a CHECK constraint, use the following SQL:

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
DROP CONSTRAINT chk_Person

MySQL:

ALTER TABLE Persons
DROP CHECK chk_Person

SQL DEFAULT Constraint

SQL DEFAULT Constraint
The DEFAULT constraint is used to insert a default value into a column.

The default value will be added to all new records, if no other value is
specified.

SQL DEFAULT Constraint on CREATE TABLE
The following SQL creates a DEFAULT constraint on the "City" column when
the "Persons" table is created:

My SQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons
(
P_Id int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255) DEFAULT 'Sandnes'
)

The DEFAULT constraint can also be used to insert system values, by using
functions like GETDATE():

CREATE TABLE Orders
(
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
OrderDate date DEFAULT GETDATE()
)

SQL DEFAULT Constraint on ALTER TABLE
To create a DEFAULT constraint on the "City" column when the table is
already created, use the following SQL:

MySQL:

ALTER TABLE Persons
ALTER City SET DEFAULT 'SANDNES'

SQL Server / MS Access:

ALTER TABLE Persons
ALTER COLUMN City SET DEFAULT 'SANDNES'

Oracle:

ALTER TABLE Persons
MODIFY City DEFAULT 'SANDNES'

To DROP a DEFAULT Constraint
To drop a DEFAULT constraint, use the following SQL:

MySQL:

ALTER TABLE Persons
ALTER City DROP DEFAULT

SQL Server / Oracle / MS Access:

ALTER TABLE Persons
ALTER COLUMN City DROP DEFAULT

SQL CREATE INDEX Statement

The CREATE INDEX statement is used to create indexes in tables.

Indexes allow the database application to find data fast; without reading
the whole table.

Indexes
An index can be created in a table to find data more quickly and efficiently.

The users cannot see the indexes, they are just used to speed up
searches/queries.

Note: Updating a table with indexes takes more time than updating a table
without (because the indexes also need an update). So you should only
create indexes on columns (and tables) that will be frequently searched
against.

SQL CREATE INDEX Syntax

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name
ON table_name (column_name)

SQL CREATE UNIQUE INDEX Syntax

Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name
ON table_name (column_name)

Note: The syntax for creating indexes varies among different databases.
Therefore: Check the syntax for creating indexes in your database.

CREATE INDEX Example
The SQL statement below creates an index named "PIndex" on the
"LastName" column in the "Persons" table:

CREATE INDEX PIndex
ON Persons (LastName)

If you want to create an index on a combination of columns, you can list the
column names within the parentheses, separated by commas:

CREATE INDEX PIndex
ON Persons (LastName, FirstName)

SQL DROP INDEX, DROP
TABLE, and DROP DATABASE

Indexes, tables, and databases can easily be deleted/removed with the
DROP statement.

The DROP INDEX Statement
The DROP INDEX statement is used to delete an index in a table.

DROP INDEX Syntax for MS Access:
DROP INDEX index_name ON table_name

DROP INDEX Syntax for MS SQL Server:
DROP INDEX table_name.index_name

DROP INDEX Syntax for DB2/Oracle:
DROP INDEX index_name

DROP INDEX Syntax for MySQL:
ALTER TABLE table_name DROP INDEX index_name

The DROP TABLE Statement
The DROP TABLE statement is used to delete a table.

DROP TABLE table_name

The DROP DATABASE Statement

The DROP DATABASE statement is used to delete a database.

DROP DATABASE database_name

The TRUNCATE TABLE Statement
What if we only want to delete the data inside the table, and not the table
itself?

Then, use the TRUNCATE TABLE statement:

TRUNCATE TABLE table_name

SQL ALTER TABLE Statement

The ALTER TABLE Statement
The ALTER TABLE statement is used to add, delete, or modify columns in an
existing table.

SQL ALTER TABLE Syntax

To add a column in a table, use the following syntax:

ALTER TABLE table_name
ADD column_name datatype

To delete a column in a table, use the following syntax (notice that some
database systems don't allow deleting a column):

ALTER TABLE table_name
DROP COLUMN column_name

To change the data type of a column in a table, use the following syntax:

SQL Server / MS Access:

ALTER TABLE table_name
ALTER COLUMN column_name datatype

My SQL / Oracle (prior version 10G):

ALTER TABLE table_name
MODIFY COLUMN column_name datatype

Oracle 10G and later:

ALTER TABLE table_name
MODIFY column_name datatype

SQL ALTER TABLE Example
Look at the "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to add a column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ADD DateOfBirth date

Notice that the new column, "DateOfBirth", is of type date and is going to
hold a date. The data type specifies what type of data the column can hold.
For a complete reference of all the data types available in MS Access, MySQL,
and SQL Server, go to our complete Data Types reference.

The "Persons" table will now look like this:

https://www.w3schools.com/sql/sql_datatypes.asp

P_Id LastName FirstName Address City DateOfBirth

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Change Data Type Example
Now we want to change the data type of the column named "DateOfBirth" in
the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ALTER COLUMN DateOfBirth year

Notice that the "DateOfBirth" column is now of type year and is going to hold
a year in a two-digit or four-digit format.

DROP COLUMN Example
Next, we want to delete the column named "DateOfBirth" in the "Persons"
table.

We use the following SQL statement:

ALTER TABLE Persons
DROP COLUMN DateOfBirth

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

SQL AUTO INCREMENT Field

Auto-increment allows a unique number to be generated when a new
record is inserted into a table.

AUTO INCREMENT a Field
Very often we would like the value of the primary key field to be created
automatically every time a new record is inserted.

We would like to create an auto-increment field in a table.

Syntax for MySQL
The following SQL statement defines the "ID" column to be an auto-
increment primary key field in the "Persons" table:

CREATE TABLE Persons
(
ID int NOT NULL AUTO_INCREMENT,
LastName varchar(255) NOT NULL,

FirstName varchar(255),
Address varchar(255),
City varchar(255),
PRIMARY KEY (ID)
)

MySQL uses the AUTO_INCREMENT keyword to perform an auto-increment
feature.

By default, the starting value for AUTO_INCREMENT is 1, and it will
increment by 1 for each new record.

To let the AUTO_INCREMENT sequence start with another value, use the
following SQL statement:

ALTER TABLE Persons AUTO_INCREMENT=100

To insert a new record into the "Persons" table, we will NOT have to specify a
value for the "ID" column (a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table.
The "ID" column would be assigned a unique value. The "FirstName" column
would be set to "Lars" and the "LastName" column would be set to "Monsen".

Syntax for SQL Server
The following SQL statement defines the "ID" column to be an auto-
increment primary key field in the "Persons" table:

CREATE TABLE Persons
(
ID int IDENTITY(1,1) PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The MS SQL Server uses the IDENTITY keyword to perform an auto-
increment feature.

In the example above, the starting value for IDENTITY is 1, and it will
increment by 1 for each new record.

Tip: To specify that the "ID" column should start at value 10 and increment
by 5, change it to IDENTITY(10,5).

To insert a new record into the "Persons" table, we will NOT have to specify a
value for the "ID" column (a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table.
The "ID" column would be assigned a unique value. The "FirstName" column
would be set to "Lars" and the "LastName" column would be set to "Monsen".

Syntax for Access
The following SQL statement defines the "ID" column to be an auto-
increment primary key field in the "Persons" table:

CREATE TABLE Persons
(
ID Integer PRIMARY KEY AUTOINCREMENT,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The MS Access uses the AUTOINCREMENT keyword to perform an auto-
increment feature.

By default, the starting value for AUTOINCREMENT is 1, and it will increment
by 1 for each new record.

Tip: To specify that the "ID" column should start at value 10 and increment
by 5, change the autoincrement to AUTOINCREMENT(10,5).

To insert a new record into the "Persons" table, we will NOT have to specify a
value for the "ID" column (a unique value will be added automatically):

INSERT INTO Persons (FirstName,LastName)
VALUES ('Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table.
The "P_Id" column would be assigned a unique value. The "FirstName"
column would be set to "Lars" and the "LastName" column would be set to
"Monsen".

Syntax for Oracle
In Oracle the code is a little bit more tricky.

You will have to create an auto-increment field with the sequence object (this
object generates a number sequence).

Use the following CREATE SEQUENCE syntax:

CREATE SEQUENCE seq_person
MINVALUE 1
START WITH 1
INCREMENT BY 1
CACHE 10

The code above creates a sequence object called seq_person, that starts with
1 and will increment by 1. It will also cache up to 10 values for performance.
The cache option specifies how many sequence values will be stored in
memory for faster access.

To insert a new record into the "Persons" table, we will have to use the
nextval function (this function retrieves the next value from seq_person
sequence):

INSERT INTO Persons (ID,FirstName,LastName)
VALUES (seq_person.nextval,'Lars','Monsen')

The SQL statement above would insert a new record into the "Persons" table.
The "ID" column would be assigned the next number from the seq_person
sequence. The "FirstName" column would be set to "Lars" and the
"LastName" column would be set to "Monsen".

SQL Views
❮ Previous Next ❯

A view is a virtual table.

This chapter shows how to create, update, and delete a view.

https://www.w3schools.com/sql/sql_autoincrement.asp
https://www.w3schools.com/sql/sql_null_values.asp

SQL CREATE VIEW Statement
In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view
are fields from one or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and
present the data as if the data were coming from one single table.

SQL CREATE VIEW Syntax
CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Note: A view always shows up-to-date data! The database engine recreates
the data, using the view's SQL statement, every time a user queries a view.

SQL CREATE VIEW Examples
If you have the Northwind database you can see that it has several views
installed by default.

The view "Current Product List" lists all active products (products that are not
discontinued) from the "Products" table. The view is created with the
following SQL:

CREATE VIEW [Current Product List] AS
SELECT ProductID,ProductName
FROM Products
WHERE Discontinued=No

We can query the view above as follows:

SELECT * FROM [Current Product List]

Another view in the Northwind sample database selects every product in the
"Products" table with a unit price higher than the average unit price:

CREATE VIEW [Products Above Average Price] AS
SELECT ProductName,UnitPrice

FROM Products
WHERE UnitPrice>(SELECT AVG(UnitPrice) FROM Products)

We can query the view above as follows:

SELECT * FROM [Products Above Average Price]

Another view in the Northwind database calculates the total sale for each
category in 1997. Note that this view selects its data from another view
called "Product Sales for 1997":

CREATE VIEW [Category Sales For 1997] AS
SELECT DISTINCT CategoryName,Sum(ProductSales) AS CategorySales
FROM [Product Sales for 1997]
GROUP BY CategoryName

We can query the view above as follows:

SELECT * FROM [Category Sales For 1997]

We can also add a condition to the query. Now we want to see the total sale
only for the category "Beverages":

SELECT * FROM [Category Sales For 1997]
WHERE CategoryName='Beverages'

SQL Updating a View
You can update a view by using the following syntax:

SQL CREATE OR REPLACE VIEW Syntax
CREATE OR REPLACE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Now we want to add the "Category" column to the "Current Product List"
view. We will update the view with the following SQL:

CREATE OR REPLACE VIEW [Current Product List] AS
SELECT ProductID,ProductName,Category
FROM Products
WHERE Discontinued=No

SQL Dropping a View
You can delete a view with the DROP VIEW command.

SQL DROP VIEW Syntax
DROP VIEW view_name

SQL NULL Values

NULL values represent missing unknown data.

By default, a table column can hold NULL values.

This chapter will explain the IS NULL and IS NOT NULL operators.

SQL NULL Values
If a column in a table is optional, we can insert a new record or update an
existing record without adding a value to this column. This means that the
field will be saved with a NULL value.

NULL values are treated differently from other values.

NULL is used as a placeholder for unknown or inapplicable values.

Note: It is not possible to compare NULL and 0; they are not equivalent.

SQL Working with NULL Values
Look at the following "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Stavanger

Suppose that the "Address" column in the "Persons" table is optional. This
means that if we insert a record with no value for the "Address" column, the
"Address" column will be saved with a NULL value.

How can we test for NULL values?

It is not possible to test for NULL values with comparison operators, such as
=, <, or <>.

We will have to use the IS NULL and IS NOT NULL operators instead.

SQL IS NULL
How do we select only the records with NULL values in the "Address"
column?

We will have to use the IS NULL operator:

SELECT LastName,FirstName,Address FROM Persons
WHERE Address IS NULL

The result-set will look like this:

LastName FirstName Address

Hansen Ola

Pettersen Kari

Tip: Always use IS NULL to look for NULL values.

SQL IS NOT NULL
How do we select only the records with no NULL values in the "Address"
column?

We will have to use the IS NOT NULL operator:

SELECT LastName,FirstName,Address FROM Persons
WHERE Address IS NOT NULL

The result-set will look like this:

LastName FirstName Address

Svendson Tove Borgvn 23

SQL GROUP BY Statement

The GROUP BY Statement
The GROUP BY statement is used in conjunction with the aggregate functions
to group the result-set by one or more columns.

SQL GROUP BY Syntax
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Orders" table:

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 1996-07-04 3

10249 81 6 1996-07-05 1

10250 34 4 1996-07-08 2

And a selection from the "Shippers" table:

ShipperID ShipperName

1 Speedy Express

2 United Package

3 Federal Shipping

And a selection from the "Employees" table:

EmployeeID LastName FirstName BirthDate Photo Notes

1 Davolio Nancy 1968-12-08 EmpID1.pic Education includes a BA....

2 Fuller Andrew 1952-02-19 EmpID2.pic Andrew received his BTS....

3 Leverling Janet 1963-08-30 EmpID3.pic Janet has a BS degree....

SQL GROUP BY Example
Now we want to find the number of orders sent by each shipper.

The following SQL statement counts as orders grouped by shippers:

Example
SELECT Shippers.ShipperName,COUNT(Orders.OrderID) AS NumberOfOrders FROM O
rders
LEFT JOIN Shippers
ON Orders.ShipperID=Shippers.ShipperID
GROUP BY ShipperName;

Try it Yourself »

GROUP BY More Than One Column

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_groupby

We can also use the GROUP BY statement on more than one column, like
this:

Example
SELECT Shippers.ShipperName, Employees.LastName,
COUNT(Orders.OrderID) AS NumberOfOrders
FROM ((Orders
INNER JOIN Shippers
ON Orders.ShipperID=Shippers.ShipperID)
INNER JOIN Employees
ON Orders.EmployeeID=Employees.EmployeeID)
GROUP BY ShipperName,LastName;

Try it Yourself »

SQL HAVING Clause

The HAVING Clause
The HAVING clause was added to SQL because the WHERE keyword could
not be used with aggregate functions.

SQL HAVING Syntax
SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value;

Demo Database
In this tutorial we will use the well-known Northwind sample database.

Below is a selection from the "Orders" table:

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_groupby_2

OrderID CustomerID EmployeeID OrderDate ShipperID

10248 90 5 1996-07-04 3

10249 81 6 1996-07-05 1

10250 34 4 1996-07-08 2

And a selection from the "Employees" table:

EmployeeID LastName FirstName BirthDate Photo Notes

1 Davolio Nancy 1968-12-08 EmpID1.pic Education includes a BA....

2 Fuller Andrew 1952-02-19 EmpID2.pic Andrew received his BTS....

3 Leverling Janet 1963-08-30 EmpID3.pic Janet has a BS degree....

SQL HAVING Example
Now we want to find if any of the employees has registered more than 10
orders.

We use the following SQL statement:

Example
SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders FROM (O
rders
INNER JOIN Employees
ON Orders.EmployeeID=Employees.EmployeeID)
GROUP BY LastName
HAVING COUNT(Orders.OrderID) > 10;

Try it Yourself »

Now we want to find if the employees "Davolio" or "Fuller" have registered
more than 25 orders.

We add an ordinary WHERE clause to the SQL statement:

Example
SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders FROM Or
ders
INNER JOIN Employees
ON Orders.EmployeeID=Employees.EmployeeID
WHERE LastName='Davolio' OR LastName='Fuller'
GROUP BY LastName
HAVING COUNT(Orders.OrderID) > 25;

Try it Yourself »

SQL Functions

SQL has many built-in functions for performing calculations on data.

SQL Aggregate Functions
SQL aggregate functions return a single value, calculated from values in a
column.

https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_having
https://www.w3schools.com/sql/trysql.asp?filename=trysql_select_having_where

Function Description

AVG() Returns the average value

COUNT() Returns the number of rows

FIRST() Returns the first value

LAST() Returns the last value

MAX() Returns the largest value

MIN() Returns the smallest value

ROUND() Rounds a numeric field to the number of decimals specified

SUM() Returns the sum

SQL String Functions

Function Description

https://www.w3schools.com/sql/sql_func_avg.asp
https://www.w3schools.com/sql/sql_func_count.asp
https://www.w3schools.com/sql/sql_func_first.asp
https://www.w3schools.com/sql/sql_func_last.asp
https://www.w3schools.com/sql/sql_func_max.asp
https://www.w3schools.com/sql/sql_func_min.asp
https://www.w3schools.com/sql/sql_func_round.asp
https://www.w3schools.com/sql/sql_func_sum.asp

CHARINDEX Searches an expression in a string expression and returns its
starting position if found

CONCAT()

LEFT()

LEN() / LENGTH() Returns the length of the value in a text field

LOWER() / LCASE() Converts character data to lower case

LTRIM()

SUBSTRING() / MID() Extract characters from a text field

PATINDEX()

REPLACE()

RIGHT()

RTRIM()

https://www.w3schools.com/sql/sql_func_len.asp
https://www.w3schools.com/sql/sql_func_lcase.asp
https://www.w3schools.com/sql/sql_func_mid.asp

UPPER() / UCASE() Converts character data to upper case

SQL Date Functions

MySQL Date Functions
The following table lists the most important built-in date functions in MySQL:

Function Description

NOW() Returns the current date and time

CURDATE() Returns the current date

CURTIME() Returns the current time

DATE() Extracts the date part of a date or date/time expression

EXTRACT() Returns a single part of a date/time

DATE_ADD() Adds a specified time interval to a date

DATE_SUB() Subtracts a specified time interval from a date

https://www.w3schools.com/sql/sql_func_ucase.asp
https://www.w3schools.com/sql/func_now.asp
https://www.w3schools.com/sql/func_curdate.asp
https://www.w3schools.com/sql/func_curtime.asp
https://www.w3schools.com/sql/func_date.asp
https://www.w3schools.com/sql/func_extract.asp
https://www.w3schools.com/sql/func_date_add.asp
https://www.w3schools.com/sql/func_date_sub.asp

DATEDIFF() Returns the number of days between two dates

DATE_FORMAT() Displays date/time data in different formats

SQL Server Date Functions
The following table lists the most important built-in date functions in SQL
Server:

Function Description

GETDATE() Returns the current date and time

DATEPART() Returns a single part of a date/time

DATEADD() Adds or subtracts a specified time interval from a date

DATEDIFF() Returns the time between two dates

CONVERT() Displays date/time data in different formats

SQL Date and Time Data Types and
Functions

https://www.w3schools.com/sql/func_datediff_mysql.asp
https://www.w3schools.com/sql/func_date_format.asp
https://www.w3schools.com/sql/func_getdate.asp
https://www.w3schools.com/sql/func_datepart.asp
https://www.w3schools.com/sql/func_dateadd.asp
https://www.w3schools.com/sql/func_datediff.asp
https://www.w3schools.com/sql/func_convert.asp

Function Description

FORMAT() Formats how a field is to be displayed

NOW() Returns the current system date and time

SQL Dates
The most difficult part when working with dates is to be sure that the format
of the date you are trying to insert, matches the format of the date column in
the database.

As long as your data contains only the date portion, your queries will work as
expected. However, if a time portion is involved, it gets more complicated.

SQL Date Data Types
MySQL comes with the following data types for storing a date or a date/time
value in the database:

 DATE - format YYYY-MM-DD
 DATETIME - format: YYYY-MM-DD HH:MI:SS
 TIMESTAMP - format: YYYY-MM-DD HH:MI:SS
 YEAR - format YYYY or YY

SQL Server comes with the following data types for storing a date or a
date/time value in the database:

 DATE - format YYYY-MM-DD
 DATETIME - format: YYYY-MM-DD HH:MI:SS
 SMALLDATETIME - format: YYYY-MM-DD HH:MI:SS
 TIMESTAMP - format: a unique number

Note: The date types are chosen for a column when you create a new table
in your database!

https://www.w3schools.com/sql/sql_func_format.asp
https://www.w3schools.com/sql/sql_func_now.asp

For an overview of all data types available, go to our complete Data Types
reference.

SQL Working with Dates
You can compare two dates easily if there is no time component involved!

Assume we have the following "Orders" table:

OrderId ProductName OrderDate

1 Geitost 2008-11-11

2 Camembert Pierrot 2008-11-09

3 Mozzarella di Giovanni 2008-11-11

4 Mascarpone Fabioli 2008-10-29

Now we want to select the records with an OrderDate of "2008-11-11" from
the table above.

We use the following SELECT statement:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

The result-set will look like this:

OrderId ProductName OrderDate

https://www.w3schools.com/sql/sql_datatypes.asp
https://www.w3schools.com/sql/sql_datatypes.asp

1 Geitost 2008-11-11

3 Mozzarella di Giovanni 2008-11-11

Now, assume that the "Orders" table looks like this (notice the time
component in the "OrderDate" column):

OrderId ProductName OrderDate

1 Geitost 2008-11-11 13:23:44

2 Camembert Pierrot 2008-11-09 15:45:21

3 Mozzarella di Giovanni 2008-11-11 11:12:01

4 Mascarpone Fabioli 2008-10-29 14:56:59

If we use the same SELECT statement as above:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

we will get no result! This is because the query is looking only for dates with
no time portion.

Tip: If you want to keep your queries simple and easy to maintain, do not
allow time components in your dates!

SQL NULL Functions

SQL ISNULL(), NVL(), IFNULL() and
COALESCE() Functions
Look at the following "Products" table:

P_Id ProductName UnitPrice UnitsInStock UnitsOnOrder

1 Jarlsberg 10.45 16 15

2 Mascarpone 32.56 23

3 Gorgonzola 15.67 9 20

Suppose that the "UnitsOnOrder" column is optional, and may contain NULL
values.

We have the following SELECT statement:

SELECT ProductName,UnitPrice*(UnitsInStock+UnitsOnOrder)
FROM Products

In the example above, if any of the "UnitsOnOrder" values are NULL, the
result is NULL.

Microsoft's ISNULL() function is used to specify how we want to treat NULL
values.

The NVL(), IFNULL(), and COALESCE() functions can also be used to achieve
the same result.

In this case we want NULL values to be zero.

Below, if "UnitsOnOrder" is NULL it will not harm the calculation, because
ISNULL() returns a zero if the value is NULL:

MS Access

SELECT ProductName,UnitPrice*(UnitsInStock+IIF(ISNULL(UnitsOnOrder),0,Unit
sOnOrder))
FROM Products

SQL Server

SELECT ProductName,UnitPrice*(UnitsInStock+ISNULL(UnitsOnOrder,0))
FROM Products

Oracle

Oracle does not have an ISNULL() function. However, we can use the NVL()
function to achieve the same result:

SELECT ProductName,UnitPrice*(UnitsInStock+NVL(UnitsOnOrder,0))
FROM Products

MySQL

MySQL does have an ISNULL() function. However, it works a little bit
different from Microsoft's ISNULL() function.

In MySQL we can use the IFNULL() function, like this:

SELECT ProductName,UnitPrice*(UnitsInStock+IFNULL(UnitsOnOrder,0))
FROM Products

or we can use the COALESCE() function, like this:

SELECT ProductName,UnitPrice*(UnitsInStock+COALESCE(UnitsOnOrder,0))
FROM Products

SQL Operators

SQL Arithmetic Operators

Operator Description

+ Add

- Subtract

* Multiply

/ Divide

% Modulo

SQL Bitwise Operators

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

SQL Comparison Operators

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

SQL Compound Operators

Operator Description

+= Add equals

-= Subtract equals

*= Multiply equals

/= Divide equals

%= Modulo equals

&= Bitwise AND equals

^-= Bitwise exclusive equals

|*= Bitwise OR equals

SQL Logical Operators

Operator Description

ALL TRUE if all of a set of comparisons are TRUE

AND TRUE if both expressions are TRUE

ANY TRUE if any one of a set of comparisons are TRUE

BETWEEN TRUE if the operand is within the range of comparisons

EXISTS TRUE if a subquery contains any rows

IN TRUE if the operand is equal to one of a list of expressions

LIKE TRUE if the operand matches a pattern

NOT Reverses the value of any other operator

OR TRUE if either expression is TRUE

SOME TRUE if some of a set of comparisons are TRUE

SQL General Data Types

A data type defines what kind of value a column can contain.

SQL General Data Types
Each column in a database table is required to have a name and a data type.

SQL developers have to decide what types of data will be stored inside each
and every table column when creating a SQL table. The data type is a label
and a guideline for SQL to understand what type of data is expected inside of
each column, and it also identifies how SQL will interact with the stored data.

The following table lists the general data types in SQL:

Data type Description

CHARACTER(n) Character string. Fixed-length n

VARCHAR(n) or
CHARACTER VARYING(n)

Character string. Variable length. Maximum length n

BINARY(n) Binary string. Fixed-length n

BOOLEAN Stores TRUE or FALSE values

VARBINARY(n) or
BINARY VARYING(n)

Binary string. Variable length. Maximum length n

INTEGER(p) Integer numerical (no decimal). Precision p

SMALLINT Integer numerical (no decimal). Precision 5

INTEGER Integer numerical (no decimal). Precision 10

BIGINT Integer numerical (no decimal). Precision 19

DECIMAL(p,s) Exact numerical, precision p, scale s. Example:
decimal(5,2) is a number that has 3 digits before the
decimal and 2 digits after the decimal

NUMERIC(p,s) Exact numerical, precision p, scale s. (Same as DECIMAL)

FLOAT(p) Approximate numerical, mantissa precision p. A floating
number in base 10 exponential notation. The size argument
for this type consists of a single number specifying the
minimum precision

REAL Approximate numerical, mantissa precision 7

FLOAT Approximate numerical, mantissa precision 16

DOUBLE PRECISION Approximate numerical, mantissa precision 16

DATE Stores year, month, and day values

TIME Stores hour, minute, and second values

TIMESTAMP Stores year, month, day, hour, minute, and second values

INTERVAL Composed of a number of integer fields, representing a
period of time, depending on the type of interval

ARRAY A set-length and ordered collection of elements

MULTISET A variable-length and unordered collection of elements

XML Stores XML data

SQL Data Type Quick Reference
However, different databases offer different choices for the data type
definition.

The following table shows some of the common names of data types between
the various database platforms:

Data type Access SQLServer Oracle MySQL PostgreSQL

boolean Yes/No Bit Byte N/A Boolean

integer Number (integer) Int Number Int
Integer

Int
Integer

float Number (single) Float
Real

Number Float Numeric

currency Currency Money N/A N/A Money

string (fixed) N/A Char Char Char Char

string (variable) Text (<256)
Memo (65k+)

Varchar Varchar
Varchar2

Varchar Varchar

binary object OLE Object
Memo

Binary (fixed up to
8K)
Varbinary (<8K)
Image (<2GB)

Long
Raw

Blob
Text

Binary
Varbinary

Note: Data types might have different names in different database. And
even if the name is the same, the size and other details may be
different! Always check the documentation!

SQL Data Types for Various DBs

SQL Server Data Types
String types:

Data type Description Storage

char(n) Fixed width character string. Maximum 8,000 characters Defined width

varchar(n) Variable width character string. Maximum 8,000 characters 2 bytes + number of
chars

varchar(max) Variable width character string. Maximum 1,073,741,824
characters

2 bytes + number of
chars

text Variable width character string. Maximum 2GB of text data 4 bytes + number of
chars

nchar Fixed width Unicode string. Maximum 4,000 characters Defined width x 2

nvarchar Variable width Unicode string. Maximum 4,000 characters

nvarchar(max) Variable width Unicode string. Maximum 536,870,912
characters

ntext Variable width Unicode string. Maximum 2GB of text data

bit Allows 0, 1, or NULL

binary(n) Fixed width binary string. Maximum 8,000 bytes

varbinary Variable width binary string. Maximum 8,000 bytes

varbinary(max) Variable width binary string. Maximum 2GB

image Variable width binary string. Maximum 2GB

Number types:

Data type Description Storage

tinyint Allows whole numbers from 0 to 255 1 byte

smallint Allows whole numbers between -32,768 and 32,767 2 bytes

int Allows whole numbers between -2,147,483,648 and 2,147,483,647 4 bytes

bigint Allows whole numbers between -9,223,372,036,854,775,808 and
9,223,372,036,854,775,807

8 bytes

decimal(p,s) Fixed precision and scale numbers.

Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of digits that can
be stored (both to the left and to the right of the decimal point). p must
be a value from 1 to 38. Default is 18.

The s parameter indicates the maximum number of digits stored to the
right of the decimal point. s must be a value from 0 to p. Default value
is 0

5-17 bytes

numeric(p,s) Fixed precision and scale numbers.

Allows numbers from -10^38 +1 to 10^38 –1.

The p parameter indicates the maximum total number of digits that can
be stored (both to the left and to the right of the decimal point). p must
be a value from 1 to 38. Default is 18.

The s parameter indicates the maximum number of digits stored to the
right of the decimal point. s must be a value from 0 to p. Default value
is 0

5-17 bytes

smallmoney Monetary data from -214,748.3648 to 214,748.3647 4 bytes

money Monetary data from -922,337,203,685,477.5808 to
922,337,203,685,477.5807

8 bytes

float(n) Floating precision number data from -1.79E + 308 to 1.79E + 308.

The n parameter indicates whether the field should hold 4 or 8 bytes.
float(24) holds a 4-byte field and float(53) holds an 8-byte field.
Default value of n is 53.

4 or 8 bytes

real Floating precision number data from -3.40E + 38 to 3.40E + 38 4 bytes

Date types:

Data type Description Storage

datetime From January 1, 1753 to December 31, 9999 with an accuracy of 3.33
milliseconds

8 bytes

datetime2 From January 1, 0001 to December 31, 9999 with an accuracy of 100
nanoseconds

6-8 bytes

smalldatetime From January 1, 1900 to June 6, 2079 with an accuracy of 1 minute 4 bytes

date Store a date only. From January 1, 0001 to December 31, 9999 3 bytes

time Store a time only to an accuracy of 100 nanoseconds 3-5 bytes

datetimeoffset The same as datetime2 with the addition of a time zone offset 8-10 bytes

timestamp Stores a unique number that gets updated every time a row gets created or
modified. The timestamp value is based upon an internal clock and does not
correspond to real time. Each table may have only one timestamp variable

Other data types:

Data type Description

sql_variant Stores up to 8,000 bytes of data of various data types, except text,
ntext, and timestamp

uniqueidentifier Stores a globally unique identifier (GUID)

xml Stores XML formatted data. Maximum 2GB

cursor Stores a reference to a cursor used for database operations

table Stores a result-set for later processing

SQL Statement Syntax

AND / OR SELECT column_name(s)
FROM table_name
WHERE condition
AND|OR condition

ALTER TABLE ALTER TABLE table_name
ADD column_name datatype

or

ALTER TABLE table_name
DROP COLUMN column_name

AS (alias) SELECT column_name AS column_alias
FROM table_name

or

SELECT column_name
FROM table_name AS table_alias

BETWEEN SELECT column_name(s)
FROM table_name
WHERE column_name
BETWEEN value1 AND value2

CREATE DATABASE CREATE DATABASE database_name

CREATE TABLE CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
...
)

CREATE INDEX CREATE INDEX index_name
ON table_name (column_name)

or

CREATE UNIQUE INDEX index_name
ON table_name (column_name)

CREATE VIEW CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

DELETE DELETE FROM table_name
WHERE some_column=some_value

or

DELETE FROM table_name
(Note: Deletes the entire table!!)

DELETE * FROM table_name
(Note: Deletes the entire table!!)

DROP DATABASE DROP DATABASE database_name

DROP INDEX DROP INDEX table_name.index_name (SQL Server)
DROP INDEX index_name ON table_name (MS Access)
DROP INDEX index_name (DB2/Oracle)
ALTER TABLE table_name
DROP INDEX index_name (MySQL)

DROP TABLE DROP TABLE table_name

EXISTS IF EXISTS (SELECT * FROM table_name WHERE id = ?)
BEGIN
--do what needs to be done if exists
END
ELSE
BEGIN
--do what needs to be done if not
END

GROUP BY SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

HAVING SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value

IN SELECT column_name(s)
FROM table_name
WHERE column_name
IN (value1,value2,..)

INSERT INTO INSERT INTO table_name
VALUES (value1, value2, value3,....)

or

INSERT INTO table_name
(column1, column2, column3,...)
VALUES (value1, value2, value3,....)

INNER JOIN SELECT column_name(s)
FROM table_name1
INNER JOIN table_name2
ON table_name1.column_name=table_name2.column_name

LEFT JOIN SELECT column_name(s)
FROM table_name1
LEFT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

RIGHT JOIN SELECT column_name(s)
FROM table_name1
RIGHT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

FULL JOIN SELECT column_name(s)
FROM table_name1
FULL JOIN table_name2
ON table_name1.column_name=table_name2.column_name

LIKE SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern

ORDER BY SELECT column_name(s)
FROM table_name
ORDER BY column_name [ASC|DESC]

SELECT SELECT column_name(s)
FROM table_name

SELECT * SELECT *
FROM table_name

SELECT DISTINCT SELECT DISTINCT column_name(s)
FROM table_name

SELECT INTO SELECT *
INTO new_table_name [IN externaldatabase]
FROM old_table_name

or

SELECT column_name(s)
INTO new_table_name [IN externaldatabase]
FROM old_table_name

SELECT TOP SELECT TOP number|percent column_name(s)
FROM table_name

TRUNCATE TABLE TRUNCATE TABLE table_name

UNION SELECT column_name(s) FROM table_name1
UNION
SELECT column_name(s) FROM table_name2

UNION ALL SELECT column_name(s) FROM table_name1
UNION ALL
SELECT column_name(s) FROM table_name2

UPDATE UPDATE table_name
SET column1=value, column2=value,...
WHERE some_column=some_value

WHERE SELECT column_name(s)
FROM table_name
WHERE column_name operator value

